Perception (Vision)

 Sensors

—images (RGB, infrared, multispectral,
hyperspectral)

— touch sensors
— sound
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Perceptual Tasks

» Scene Understanding

— Reconstruct the location and orientation (“pose”) of all objects in
the scene

— If objects are moving, determine their velocity (rotational and
translational)
» Object Recognition
— ldentify object against arbitrary background
— Face recognition
— “Target” recognition
» Task-specific Perception (Minimum perception needed to
carry out task)
— Obstacle avoidance
— Landmark identification
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Scene Understanding:
Vision as Inverse Graphics

3-D World 2-D Image

Computer Graphics
<_Computer Vision

Fundamental problem:

+ 3-D = 2-D transformation loses information
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3-D =» 2-D Information Loss
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3-D =» 2-D Information Loss
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3-D =» 2-D Information Loss
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Probabilistic Formulation

* |: image
« W: world

» Goal:
—argmax,, P(WI|l)=argmax,, P(l|W) - P(W)
— Which worlds are more likely?
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Image Formation

Object location (x,y,z) and pose (r, 0, ®)
Object surface color

Object surface material (reflectance
properties)

Light source position and color
Camera position and focal length
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Image Formation
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P is a point in the scene, with coordinates (X, Y, 7)
P is its image on the image plane, with coordinates (=, 1, =)
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Inverse Graphics Fallacy

+ We don’t really need to know the location of
every leaf on a tree to avoid hitting the tree while
driving

» Only extract the information necessary for
intelligent behavior!

— obstacle avoidance
— face recognition
— finding objects in your room

» The probabilistic framework is still useful in each

of these tasks
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We do not form complete models of
the world from images
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Another Example
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And Another
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The Point:

» We only attend to the “relevant” part of the
image
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Computer Vision

scenes behaviors
racking
HIGH-LEVEL e e
VISION -
object
s.f. contour recognition
depth map
s.f. §
stereg S
motion
edges disparity optical flow regions
edg hing
detection
LOW-LEVEL features
VISION . segmentation
ilters

image sequence

Bottom-Up vs. Top-Down

» Bottom-Up processing

— starts with image and performs operations in
parallel on each pixel

— find edges, find regions
— extract other important cues C
« Top-Down processing
— starts with P(W) expectations
— computes P(C | W) for groups of cues C
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Edge Detection
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Edge Detection (2)
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Look for changes in brightness

« Compute Spatial Derivative
ol(z,y) 0I(z,y)
or = Oy
« Compute Magnitude

oI(xz,y)\* | (0I(z,y)\°
(752 + (75

 Threshold
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Problem: Images are Noisy

* intensity values: . -/ ]

* derivative: oA S AANA A

true edge ﬁ ﬁ false edge
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Solution: Smooth Edges Prior to
Edge Detection

2
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Efficient Implementation:
Convolutions

h = fxg
U=-+00 v=-+400

hz,y) = > > flu,v)-g(z—uy—v)

U=——0O0 V=——0

« Smoothing: Convolve image with gaussian
« f(x,y) = l(x,y) the image intensities

¢ g(U,V) = 1
Do
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Convolutions can be performed
using Fast Fourier Transform
« FFT[f *g] = FFTI[f] - FFT[g]

— The FFT of a convolution is the product of the
FFTs of the functions

« f*g = FFT-/(FFTIf] - FFT[g])
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Computing the Derivative

* (f7g)y=f*(9)

— The derivative of a convolution can be
computed by first differentiating one of the
functions

» To take the derivative of the image after
gaussian smoothing, first differentiate the
gaussian and then smooth with that!

« Can only be done in one dimension: do it
separately for x and y.
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Canny Edge Detector

fr(u,v) = GL(u)Gs(v)
fa(u,v) = Go(uw)Gy(v)

Ry = Ixfg
R(z,y) = Ry(z,v)?+ Ry(z,y)?

» Define an edge where R(x,y) > 6 (a
threshold)
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Results
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Interpreting Edges

« Edges can be caused by many different
phenomena in the world:
— depth discontinuities
— changes in surface orientation
— changes in surface color
— changes in illumination
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Example Optical lllusion

Steps Movie
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Bayesian Model-Based Vision
(Dan Huttonlocher & Pedro Felzenszwalb)

» Goal: Locate and track people in images
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White Lie Warning

» The actual method is significantly different
than the version I’'m describing here

 For the real story, see the following paper:

— Efficient Matching of Pictorial Structures,
Proceedings of the IEEE Computer Vision and
Pattern Recognition Conference, pp. 66-73,
2000

— http://www.cs.cornell.edu/~dph/
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Probabilistic Model of a Person

+ 10 body parts ﬂ

+ connected at points

+ probability distribution over the f ’ %
locations of the points 2

+ probability distribution over relative
orientations of the parts

+ appearance distribution tells what
each part looks like

¢ P(L|I) oc P(IIL) - P(L)

(c) 2003 Thomas G. Dietterich

31

Relationship between body part
locations
Each body part is

represented as a
rectangle

s, = degree of

foreshortening (¥
(x,y;) = relative offset
0,; = relative orientation
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Bayesian Network Model

S;
torso
P(s;) = Gauss(s;;1,0))
P(x|x;,0,,8;) = Gauss(x;; x; + 5, ;'S;, Oy ;)
P(yly,oy.s) = Gauss(y;; y; + 6y,;s;, o)
E(ei,j) = VonMiseS(ei,pchykﬂm)s Thomas G. Dietterich 33
Generating a Person:
Step 1: Position of Torso
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Step 2: Foreshortening of Torso
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Step 3: Arm, Leg, and Head Joints
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Choose Angle for Each Body Part
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Choose Foreshortening
for each part
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Choose joints of next parts
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Choose Angles of Forearms and
Lower Legs

)
7N
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Choose foreshortening of forearms
and lower legs

o
F U
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Appearance Model

Each pixel z is either a foreground pixel (a body
part) or a background pixel.

P(f, = true | z € Areal) = q,
P(f,=true | z € Area2) = q,
P(f,=true | z € Area3) = 0.5

Area 2

Area 3 (whole image)
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Appearance Model (2)

« Each part has an average grey level
(and a variance). Each pixel z
generates its grey level from a
Gaussian distribution:

—P(g, | f;=true, z € part)) = Gauss(g,; w;, o))

« Background pixels have average grey
level and variance
— P(g, | f,=false, z € background) = Gauss(g,;
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* Does not handle averlannina bodv parts

Generating the Image

« Generate body location and pose

» Generate pixel foreground/background for
each pixel independently

« Generate pixel grey levels
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Training

» All model parameters can be fit by
supervised training

— Manually identify location and orientation of
body parts

— Fit joint location and angle distributions,
foreshortening distributions

— Fit g, and q, foreground probabilities
— Fit grey level distributions
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Examples
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More Examples
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More examples
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Implementation Tricks

« argmax, P(L|I)
— In theory this would require iterating over all
locations L in the image |

— In practice, the authors developed clever
algorithms for using gaussian filter banks to
find promising locations and dynamic
programming methods for computing the
probabilities
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Task-Specific Computer Vision:
CMU NavLab Autonomous Driving
« Camera mounted on rear-view mirror

takes image of the road ahead of the
vehicle

» Goal: Determine curvature of the road and
location of the vehicle in the lane
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NavLab (2)

Trapezoidal region is extracted
— based on camera geometry
— vehicle speed
— so that each scan line in trapezoid covers same size region in
physical world (assuming flat road surface)
Trapezoidal Image is then re-sampled to produce a
rectangular image

For each of several road curvature hypotheses, the
rectangular image is recomputed to produce an image
that would be straight if the curvature hypothesis is
correct

These images are scored to see which one gives the
straightest image and the corresponding curvature
hypothesis is accepted
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RALPH images

Sample Window

Low Resolution Image
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Choosing the Best Road Curvature
Hypothesis

« argmax, straightness(transformedimage(l,h))

Road Curvature
Hypotheses

Transformed
Images
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Measuring Straightness

- Sum Vertically

Intensity

Column

S(x) = 2., l(xy)
straightness = > [S(x) — S(x+1)|
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Discussion

» Method works for any kind of systematic
coloring of the road surface
—lane marking
—ruts
— tire tracks in snow or rain
— oil droppings in center of lane
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Determining Lateral Position

« At time when vehicle is centered in lane,
store a template S(x) for all columns x.

— driver pushes a button

« Compare current template to stored
template S(x) under various lateral offsets
to find best match =» Gives lateral position
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Rapidly Learning New Templates

Far Field

—>

Near Field

» Subdivide current rectangle into 2 parts

— Near field is used to determine current lateral position

— Far Field is used to capture new template
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No Hands Across America
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« 2797/2849 miles (98.2%) driven
autonomously
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Computer Vision Summary

Many different visual tasks; require different
amounts of analysis

Inverse computer graphics is overkill in most
cases

Low level vision: smoothing, edge detection,
region finding

— example: Canny edge detector

Probabilistic vision methods: H&F people tracker

Task-specific vision: NavLab lane keeper
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