Perception (Vision)

- Sensors
 - images (RGB, infrared, multispectral, hyperspectral)
 - touch sensors
 - sound

(c) 2003 Thomas G. Dietterich

4

Perceptual Tasks

- Scene Understanding
 - Reconstruct the location and orientation ("pose") of all objects in the scene
 - If objects are moving, determine their velocity (rotational and translational)
- Object Recognition
 - Identify object against arbitrary background
 - Face recognition
 - "Target" recognition
- Task-specific Perception (Minimum perception needed to carry out task)
 - Obstacle avoidance
 - Landmark identification

(c) 2003 Thomas G. Dietterich

3-D World

2-D Image

Fundamental problem:

• 3-D → 2-D transformation loses information

(c) 2003 Thomas G. Dietterich

3

3-D → 2-D Information Loss

3-D → 2-D Information Loss

(c) 2003 Thomas G. Dietterich

5

3-D → 2-D Information Loss

Probabilistic Formulation

- I: image
- W: world
- Goal:
 - $-\operatorname{argmax}_{W} P(W|I) = \operatorname{argmax}_{W} P(I|W) \cdot P(W)$
 - Which worlds are more likely?

(c) 2003 Thomas G. Dietterich

7

Image Formation

- Object location (x,y,z) and pose (r, θ, ω)
- Object surface color
- Object surface material (reflectance properties)
- Light source position and color
- Camera position and focal length

(c) 2003 Thomas G. Dietterich

Image Formation

P is a point in the scene, with coordinates (X,Y,Z) P^\prime is its image on the image plane, with coordinates (x,y,z)

$$x = \frac{-fX}{Z}, \ y = \frac{-fY}{Z}$$

by similar triangles. Scale/distance is indeterminate!

9

Inverse Graphics Fallacy

- We don't really need to know the location of every leaf on a tree to avoid hitting the tree while driving
- Only extract the information necessary for intelligent behavior!
 - obstacle avoidance
 - face recognition
 - finding objects in your room
- The probabilistic framework is still useful in each of these tasks

(c) 2003 Thomas G. Dietterich

We do not form complete models of the world from images

(c) 2003 Thomas G. Dietterich

1

Another Example

And Another

(c) 2003 Thomas G. Dietterich

13

The Point:

We only attend to the "relevant" part of the image

Bottom-Up vs. Top-Down

- Bottom-Up processing
 - starts with image and performs operations in parallel on each pixel
 - find edges, find regions
 - extract other important cues C
- Top-Down processing
 - starts with P(W) expectations
 - computes P(C | W) for groups of cues C

Edge Detection

(c) 2003 Thomas G. Dietterich

17

Edge Detection (2)

Look for changes in brightness

Compute Spatial Derivative

$$\left(\frac{\partial I(x,y)}{\partial x}, \frac{\partial I(x,y)}{\partial y}\right)$$

Compute Magnitude

$$\left(\frac{\partial I(x,y)}{\partial x}\right)^2 + \left(\frac{\partial I(x,y)}{\partial y}\right)^2$$

Threshold

(c) 2003 Thomas G. Dietterich

19

Problem: Images are Noisy

intensity values:

· derivative:

threshold

(c) 2003 Thomas G. Dietterich

Solution: Smooth Edges Prior to Edge Detection

Derivative of Smoothed Intensities:

(c) 2003 Thomas G. Dietterich

21

Efficient Implementation: Convolutions

$$h = f * g$$

$$h(x,y) = \sum_{u=-\infty}^{u=+\infty} \sum_{v=-\infty}^{v=+\infty} f(u,v) \cdot g(x-u,y-v)$$

- Smoothing: Convolve image with gaussian
- f(x,y) = I(x,y) the image intensities

• g(u,v) =
$$\frac{1}{\sqrt{2\pi\sigma^2}} e^{-(u^2+v^2)/2\sigma^2}$$
(c) 2003 Thomas G. Dietterich

Convolutions can be performed using Fast Fourier Transform

- FFT[f *g] = FFT[f] · FFT[g]
 - The FFT of a convolution is the product of the FFTs of the functions
- $f *g = FFT^{-1}(FFT[f] \cdot FFT[g])$

(c) 2003 Thomas G. Dietterich

23

Computing the Derivative

- (f * g)' = f * (g')
 - The derivative of a convolution can be computed by first differentiating one of the functions
- To take the derivative of the image after gaussian smoothing, first differentiate the gaussian and then smooth with that!
- Can only be done in one dimension: do it separately for x and y.

(c) 2003 Thomas G. Dietterich

Canny Edge Detector

$$f_V(u, v) = G'_{\sigma}(u)G_{\sigma}(v)$$

$$f_H(u, v) = G_{\sigma}(u)G'_{\sigma}(v)$$

$$R_V = I * f_V$$

$$R_H = I * f_H$$

$$R(x, y) = R_V(x, y)^2 + R_H(x, y)^2$$

Define an edge where R(x,y) > θ (a threshold)

(c) 2003 Thomas G. Dietterich

25

Results

Interpreting Edges

- Edges can be caused by many different phenomena in the world:
 - depth discontinuities
 - changes in surface orientation
 - changes in surface color
 - changes in illumination

(c) 2003 Thomas G. Dietterich

27

Example Optical Illusion

Steps Movie

(c) 2003 Thomas G. Dietterich

Bayesian Model-Based Vision

(Dan Huttonlocher & Pedro Felzenszwalb)

Goal: Locate and track people in images

(c) 2003 Thomas G. Dietterich

29

White Lie Warning

- The actual method is significantly different than the version I'm describing here
- For the real story, see the following paper:
 - Efficient Matching of Pictorial Structures,
 Proceedings of the IEEE Computer Vision and Pattern Recognition Conference, pp. 66-73, 2000
 - http://www.cs.cornell.edu/~dph/

Probabilistic Model of a Person

- 10 body parts
- · connected at points
- probability distribution over the locations of the points
- probability distribution over relative orientations of the parts
- appearance distribution tells what each part looks like
- $P(L|I) \propto P(I|L) \cdot P(L)$

(c) 2003 Thomas G. Dietterich

31

Relationship between body part locations

- Each body part is represented as a rectangle
- s_i = degree of foreshortening
- (x_i, y_i) = relative offset
- $\theta_{i,j}$ = relative orientation

(c) 2003 Thomas G. Dietterich

Bayesian Network Model

 $\underline{P}(s_i) = Gauss(s_i; 1, \sigma_{s,i})$

 $\underline{P}(x_i|x_i,\sigma_{xi},s_i) = Gauss(x_i; x_i + \delta_{x,i,j},s_i,\sigma_{x,i})$

 $\underline{P}(y_{j}|y_{i},\sigma_{y_{i}},s_{i}) = Gauss(y_{j}; y_{i} + \delta_{y,l,j} s_{i}, \sigma_{y,i})$

 $\underline{P}(\theta_{i,j}) = vonMises(\theta_{i,j}, \mu_{cj}, k_{0,0})_{3 \text{ Thomas G. Dietterich}}$

33

Generating a Person: Step 1: Position of Torso

Step 2: Foreshortening of Torso

(c) 2003 Thomas G. Dietterich

35

Step 3: Arm, Leg, and Head Joints

(c) 2003 Thomas G. Dietterich

Choose Angle for Each Body Part

(c) 2003 Thomas G. Dietterich

37

Choose Foreshortening for each part

(c) 2003 Thomas G. Dietterich

Choose joints of next parts

(c) 2003 Thomas G. Dietterich

39

Choose Angles of Forearms and Lower Legs

(c) 2003 Thomas G. Dietterich

Choose foreshortening of forearms and lower legs

(c) 2003 Thomas G. Dietterich

41

Appearance Model

- Each pixel z is either a foreground pixel (a body part) or a background pixel.
- $P(f_z = true \mid z \in Area1) = q_1$
- $P(f_z = true \mid z \in Area2) = q_2$
- P(f_z = true | z ∈ Area3) = 0.5

Area 1 Area 2

Area 3 (whole image)

5) 2003 Momas G. Diellench

Appearance Model (2)

- Each part has an average grey level (and a variance). Each pixel z generates its grey level from a Gaussian distribution:
 - $-P(g_z | f_z=true, z \in part_i) = Gauss(g_z; \mu_i, \sigma_i)$
- Background pixels have average grey level and variance
 - $P(g_z \mid f_z = false, \ z \in background) = Gauss(g_z; \mu_b, \ \sigma_b)$
- Does not handle overlapping body parts

Generating the Image

- Generate body location and pose
- Generate pixel foreground/background for each pixel independently
- Generate pixel grey levels

Training

- All model parameters can be fit by supervised training
 - Manually identify location and orientation of body parts
 - Fit joint location and angle distributions, foreshortening distributions
 - Fit q₁ and q₂ foreground probabilities
 - Fit grey level distributions

(c) 2003 Thomas G. Dietterich

45

Examples

(c) 2003 Thomas G. Dietterich

More Examples

(c) 2003 Thomas G. Dietterich

47

More examples

(c) 2003 Thomas G. Dietterich

Implementation Tricks

- argmax_L P(L|I)
 - In theory this would require iterating over all locations L in the image I
 - In practice, the authors developed clever algorithms for using gaussian filter banks to find promising locations and dynamic programming methods for computing the probabilities

(c) 2003 Thomas G. Dietterich

49

Task-Specific Computer Vision: CMU NavLab Autonomous Driving

- Camera mounted on rear-view mirror takes image of the road ahead of the vehicle
- Goal: Determine curvature of the road and location of the vehicle in the lane

(c) 2003 Thomas G. Dietterich

NavLab (2)

- Trapezoidal region is extracted
 - based on camera geometry
 - vehicle speed
 - so that each scan line in trapezoid covers same size region in physical world (assuming flat road surface)
- Trapezoidal Image is then re-sampled to produce a rectangular image
- For each of several road curvature hypotheses, the rectangular image is recomputed to produce an image that would be straight if the curvature hypothesis is correct
- These images are scored to see which one gives the straightest image and the corresponding curvature hypothesis is accepted

(c) 2003 Thomas G. Dietterich

51

RALPH images

(c) 2003 Thomas G. Dietterich

Choosing the Best Road Curvature Hypothesis

argmax_h straightness(transformedImage(I,h))

(c) 2003 Thomas G. Dietterich

53

Measuring Straightness

$$S(x) = \sum_{y} I(x,y)$$

straightness = $\sum_{x} |S(x) - S(x+1)|$

(c) 2003 Thomas G. Dietterich

Discussion

- Method works for any kind of systematic coloring of the road surface
 - lane marking
 - ruts
 - tire tracks in snow or rain
 - oil droppings in center of lane

(c) 2003 Thomas G. Dietterich

55

Determining Lateral Position

- At time when vehicle is centered in lane, store a template S(x) for all columns x.
 - driver pushes a button
- Compare current template to stored template S(x) under various lateral offsets to find best match → Gives lateral position

(c) 2003 Thomas G. Dietterich

Rapidly Learning New Templates

- Subdivide current rectangle into 2 parts
 - Near field is used to determine current lateral position
 - Far Field is used to capture new template

(c) 2003 Thomas G. Dietterich

57

No Hands Across America

 2797/2849 miles (98.2%) driven autonomously

(c) 2003 Thomas G. Dietterich

Computer Vision Summary

- Many different visual tasks; require different amounts of analysis
- Inverse computer graphics is overkill in most cases
- Low level vision: smoothing, edge detection, region finding
 - example: Canny edge detector
- Probabilistic vision methods: H&F people tracker
- Task-specific vision: NavLab lane keeper

(c) 2003 Thomas G. Dietterich