ORELGDOI SIATE

LUIYERSITY
LOMPYTER
aLIElCE
UEPARTITIENT

Symbolic Methods in Numerical Optimization

Giuseppe Cerbone

Thomas G. Dietterich

Oregon State University

Computer Science Department

91-30-7 Corvallis, OR 97331-3202

Symbolic Methods
in
Numerical Optimization

Giuseppe Cerbone t

cerbone@cs.orst.edu

Thomas G. Dietterich
tgd@cs.orst.edu

Oregon State University
Computer Science Dept.

Corvallis, OR 97331-3202
Phone (503) 737-3273

Abstract

Many important application problems can be formalized as constrained
non-linear optimization tasks. However, numerical methods for solving such
problems are brittle and do not scale well. Furthermore, for large classes of
engineering problems, the objective function cannot be converted into a dif-
ferentiable closed form. This prevents the application of efficient gradient op-
timization methods—only slower, non-gradient methods can be applied. This
paper describes a method to speedup and increase the reliability of numerical
optimization by (a) optimizing the computation of the objective function, and
(b) splitting the objective function into special cases that possess differentiable
closed forms. This allows us to replace a single inefficient non-gradient-based
optimization by a set of efficient numerical gradient-directed optimizations
that can be performed in parallel. In the domain of 2-dimensional struc-
tural design, this procedure yields a 95% speedup over traditional optimization
methods and decreases the dependence of the numerical methods on having a
good starting point.

Category: Machine learning, speedup learning, optimal design.

TThis research was supported by NASA Ames Research Center under Grant Number
NAG 2-630.

1 Introduction

Many important applications can be formalized as constrained optimization
tasks. For example, we are studying the engineering domain of two-dimensional
(2-D) structural design. In this task, the goal is to design a structure of mini-
mum weight that bears a set of loads.

Figure 1 shows a solution to a design problem in which there is a single
load (L) and two stationary support points (51 and S2). The solution consists
of four members, E1, E2, E3, and E4 that connect the load to the support
points. In principle, optimal solutions to problems of this kind can be found
by numerical optimization techniques. However, in practice [Van84] these
techniques are very slow, and the solutions obtained depend on the choice of
starting points. Hence, their applicability to real-world problems is severely
restricted.

To overcome these limitations, we propose to augment numerical optimiza-
tion by first performing a symbolic compilation stage to produce objective
functions that are faster to evaluate and that depend less on the choice of the
starting point. These goals are accomplished by successive specializations of
the objective function that, in the end, reduce it to a collection of independent
functions that are fast to-evaluate, that can be differentiated symbolically, and
that represent smaller regions of the overall search space.

Our optimization schema differs from techniques currently used in the
machine learning community. Our approach relies on the specialization of
the problem via incorporation of constraints prior to optimization. Braud-
away [Bra88| designed a system along the same principle. However, to our
knowledge, very little work has been done in using symbolic techniques and
domain knowledge to speedup numerical optimization tasks. In contrast, the
current trend in the machine learning community focuses on methods, such
as Explanation Based Learning (EBL) [ElI89], capable of generating rules.
Minton [Min88] shows how these methods can result in a slow-down of the
overall process. In addition, EBL methods have had little success in the task
of optimizing numerical procedures. We conjecture that one of the reasons is
the dependence of EBL methods on the trace of the problem solver. The trace
of a numerical optimizer gives little information on the structure of the prob-
lem. Therefore, in mathematical domains, EBL-derived rules are too detailed
to produce any appreciable speedup.

The remainder of the paper is organized as follows. Section 2 presents the

2-D structural design task. This is followed in Section 3 by an overview of
numerical optimization methods, their limitations, and the proposed solution,
which is illustrated using a simple example. The proposed method is then
applied to a collection of randomly generated examples and the results of
these experiments are reported in Section 4. The experiments show that, for
a certain family of problems, the compilation stage produces a substantial
improvement in the performance of the optimization methods. Benefits and
limitations of the method are summarized in Section 5, which also outlines
future work.

2 Task description

Table 1 describes the 2-dimensional structural design task that we are attack-
ing. Figure 1 shows an example problem in which L is the load and S1 and
S2 are two supports. The so-called “topology” is given as a graph structure
containing four edges (the members) and four vertices (the load, the two sup-
ports, and an intermediate connection point C). The topology does not specify
the lengths of the members or the location of C.

The goal of the design process in this example is to find a location for C
that minimizes the weight of the structure. The position shown in the figure
gives the minimum-weight solution. In this solution, members E1 and E3
are in tension (they are being “stretched”), while members E2 and E4 are in
compression. Tension members will be referred to as “rods” and indicated
by thin lines. Compression members will be referred to as “columns” and
indicated by thick lines.

The task shown in Table 1 is actually only one step in the larger problem of
designing good structures. In general, structural design proceeds in three steps
[PS70, Van84]. First, the problem solver chooses the topology, which specifies
the locations of the loads and supports and the connectivity of the members.
Then, the second step is to determine the locations of the connection points
(and hence the lengths, locations, internal forces, and cross-sectional areas of
the members) so as to minimize the weight of the structure. This is usually
accomplished by numerical non-linear optimization techniques, and it is the
focus of this paper. The third and final step in the process optimizes the
shapes of the individual members. This can often be accomplished by linear
programming.

In addition to focusing only on the second step, we have introduced several

e e L P e P S e I T
Losds -=-> {{TL1 0 1004)})
OO0
B&D0
E200
4800
oo El E2
4000 c
3600
L3
00
sv00 E4
2400
BOOO @
51 ; S2
- e o i e 1 o 2 2 08 T B R T S S8 S 4 e e
L] 300 &00 00 1200 1500 1800 E100 $a00 2700 E 3300

Figure 1: A solution to a 2-D structural design problem with given topology.

Table 1: The 2-D Design Task.
Given: A 2-dimensional region R
A set of stable points (supports) _
A set of external loads with application points within R
A topology specifying the number of members and their in-

terconnection graph.

Find: The positions of all intermediate connection points such that
the structure has minimum weight and is stable with respect
to all external loads.

simplifying assumptions to provide a tractable testbed for developing and test-
ing knowledge compilation methods. Specifically, we assume that structural
members are joined by frictionless pins, only statically determinate structures
are considered, the cross section of a column is square, columns and rods of any
length and cross sectional area are available, and supports have no freedom of
movement.

Given these assumptions, the weight of a candidate solution is usually
calculated by a three-step process. The first step is to apply the method
of joints [WS84] to determine the forces operating in each member. Once
this is known, the second step is to classify each member as compressive or
tensile, which is important, because compressive and tensile members have
different densities. The third step is to determine the cross-sectional area of
each member. The load that a member can bear is assumed to be linearly
proportional to its cross-sectional area. Finally, the weight of each member
can be computed as the product of the density of the appropriate material,
the length of the member, and the cross-sectional area of the member.

The last two steps can be collapsed into a single parameter k: the ratio
of the density per-unit-of-force-borne for compressive members to density per-
unit-of-force-borne for tensile members. With this simplification, instead of
minimizing the weight, we can minimize the following quantity

V=Y IFlt+k > |FElL

tensile compressive
members members

where F; is the force in member 2, and [; is the length of member . This is
the initial objective function for the work described in this paper.

We conclude this section with a brief description of the method of joints,
which is one of the methods used to calculate the F; in statically determinate
structures. The method of joints computes these forces by solving a system of
linear equations as illustrated, for the problem in Figure 1, in Table 2. The
matrix of coefficients is called [WS84] the azial (or static) matrix and the vector
of givens is defined as the load vector. In Figure 1, let L = (z1,), C = (z,9),
S1 = (z1,y:), and S2 = (z3,,), be the cartesian coordinates of the load, the
connection point, and the two supports, respectively. In addition, let p and v
be the magnitude and direction of the load. The internal forces in each member
are obtained by first constructing the axial matrix and load vector and then

1A statically determinate structure contains no redundant members, and hence, the
geometrical layout of the structure completely determines the forces acting in each member. -

d

Table 2: Method of Joints for the example in Figure 1.

cos(ay) cos(az) 0 0 F Leos()
sin(ay) sin(oz) 0 0 F, | _ | Lsin(y)
0 cos(az + 180) cos(as) cos(ay) F |~ 0
0 sin(ag + 180) sin(as) sin(oy) F, 0
SeuLepes cos(ay) = (z1—z)/lh, cos(ez) = (z—=z1)/ls
cos(az) = (z1—2)/lz, cos(ag) = (z2—1z)/ls
sinfer) = (1 —w)lh, sin(er) = (y—w)/b
- - -;jg(as)d = (-5 sin(as) = (2-9)/la
and I;’s are i istances:
pendean @8 h = V(zi—2)* + (1 —u)
o = ViE-—z)+@-—w)’
s = Vz-—zl+@y-un)
Iy = \/(:‘B —_ .1'.32)2 + (y - ‘yg)z.

solving the system of equations for the unknown internal forces. Table 2 shows
the symbolic system of equations for the example in Figure 1 with unknown
forces Fy, F, Fs, and F, and with the coordinates of all the points explicitly
substituted.

Now that we have defined the 2-dimensional design task and formulated it
as a non-linear optimization problem, let us turn, in the next section, to a brief
review of existing techniques for optimization and to the proposed method.

3 Optimization

Classical optimization textbooks [Van84, PW88] present a comprehensive sur-
vey of optimization methods and of various techniques for conducting the
search for an optimal solution. The schema illustrated in Figure 2 is typical
of many domain independent non-linear optimization methods. The process
is iterative. Starting at some initial point, the objective function is evaluated
and the termination criteria are tested. If the test fails, a new point is gener-
ated by taking a step, of some chosen length in some chosen direction, away
from the current point. Each point defines a set of values for the independent
variables in the objective function.

Most optimization algorithms differ primarily in the criteria used to choose
the direction along which to optimize. Some optimization methods (e.g., Pow-

ell’s method [Van84]) choose the direction and step size using only evaluations
of the objective function. Other methods, such as gradient descent and its
variations [PW88), require computation of the partial derivatives of the objec-
tive function to choose the new direction of optimization. Still other methods
approximate the partial derivatives numerically by evaluating the objective
function at many points.

The primary computational expense of numerical optimization methods is
the repeated evaluation of the objective function. An advantage of gradient
descent methods is that they need to evaluate the objective function less often,
because they are able to take larger, and more effective steps. Of course, they
incur the additional cost of repeatedly evaluating the partial derivatives of the
objective function. Hence, they produce substantial savings only when the
reduction in the number of function evaluations offsets the cost of evaluating
the derivatives.

In engineering design, the objective function is typically very expensive to
evaluate, since it reflects many of the specifications for the design problem.
Furthermore, it is often the case that the objective function lacks a differen-
tiable closed-form. For example, in our objective function from the previous
section, the fact that the constant k is applied only to compressive members
makes it impossible to obtain a differentiable closed-form. The signs of the
internal forces must be computed before it is possible to determine which
members are compressive.

Given that the speed of numerical optimization is determined by the cost
and frequency of evaluating the objective function, there are two obvious ways
to speed up the process: (a) reduce the cost of each evaluation of the objective
function and (b) reduce the number of evaluations by finding a closed-form for
the derivative of the objective function, so that gradient descent methods can
be applied. In addition, after the gradient has been computed, it is possible to
obtain a further speedup by computing, at compile time, its linear or quadratic
Taylor approximation.

We have developed an approach that pursues these directions. The basic
idea is to perform a “compilation” stage prior to numerical optimization. Dur-
ing compilation, the objective function is subjected to successive specialization
phases to incorporate constraints into the function. First, the given topology
is incorporated into the objective function. This allows us to compute sym-
bolically the axial matrix and the load vector (see Section 2). We then apply
symbolic procedures to solve and simplify the system of equations and obtain

a closed-form expression for the forces. In principle, an infinite number of
topologies should be explored; however, in practice [Fri71], only a few of them
need be considered.

The second specialization step is to plug in the givens of the problem and
partially evaluate the resulting mixed symbolic/numeric expression. For our
examples, the givens of the problems are the loads and supports; however, one
may wish to analyze a structure subject to different inputs such as various
loading conditions or support locations. In such cases it is possible to leave
those values in symbolic form and substitute their numerical values at runtime.

The third compilation step is to split the objective function V into cases
according to an abstraction called the stress state’. The stress state of a
structure is a vector indicating, for each member, whether it is compressive
or tensile.®> The i-th element in the vector is +1 if the i-th member in the
structure is tensile, and —1 if the ¢-th member is compressive. If there are
m members in a structure, then there are 2™ possible stress states, although
only a few of them are physically realizable. For the example in Figure 1, the
stress state of the optimal solution is (+1,—1,+1, —1).

When the objective function is specialized according to stress state, the
result is a collection of special-case objective functions {V4,...,V,}. Because
each V; corresponds to one stress state, it is possible to tell, at compile time,
which forces should be multiplied by k. Hence, each V; is differentiable, and
this enables us to employ gradient-based optimization techniques that, typi-
cally, are faster than methods based only on evaluating the objective function
alone.

To further speedup the optimization process, each special case can be solved
in parallel on independent machines. All that is required is to compare the
solutions found for each V; and choose the best one. Figure 3 gives a schematic
diagram of this “compiled optimization” method.

Let us follow an example through each of the three specialization phases.

Topological simplification. Given a topology, the elements of the axial
matrix, the load vector, and the lengths can be specified symbolically as func-
tions of the coordinates of givens and unknowns in the problem. Table 2 shows
the algebraic relationship between givens and unknowns for the topology in
Figure 1. The system of equations can be solved symbolically to produce a

2The authors wish to thank Dr. David G. Ullman for suggesting this term.
3This is a generalization of the standard definition (see [Gor78]) of load path.

Choose

Initial

Point

Evaluate
Objective

Function

Test

Y

Termination

Compute

Compile
Objective

Function

New

Direction

Figure 2: Traditional optimization schema.

Optimize

Y

Optimize

Optimize

Choose

Best

Solution

Figure 3: Optimization schema with compilation stage.

Table 3: Closed-form of the internal force for member E1l in Figure 1.

Internal Force in member E1 =
p [+ ((501 —)’ + (31— y:)z)
" ((m2—)91 — v)(y — w) — (21— 2)(y2 — ¥)(y — w) Jcos(7)+
(21 — =)z — 20y —) — (22 — 2)(& — 2) (w1 —v))sin()] /
[(@@2 - 2)(1 — v) — (@1 — D)2 —) (& — &) (@1 — 00) — (21 — z) (v —)]

Table 4: Internal force for member E1 in Figure 1 with givens.
Internal Force in member E1 = 2236(y — 6000)/(y — 2z — 2000)

simplified closed-form expression for each of the internal forces in each mem-
ber. Table 3 shows the expression of the force in the member E1 that joins
the load L and the support S1.

Instance simplification. During the second phase, the expressions ob-
tained with topological simplifications are partially evaluated with respect to
the givens of the problem chosen by the user. For the example in Figure 1, we
choose loads and supports as givens and the expression of the internal force in
El is shown in Table 4 which shows that the force is now reduced to a closed-
form expression of the coordinates z and y of the (unknown) connection point

C.

Case analysis. For illustrative purposes, in Figure 4 we have plotted the
volume of the structure for the topology in Figure 1 as a function of the coor-
dinates z and y of the connection point C. Each unimodal region in the figure
corresponds to one or more stress states; for instance, (+1,—1,+1, —1) corre-
sponds to region R1. This correspondence between stress states and unimodal
regions is exploited by the case analysis, which partitions the whole region
and produces one objective function per stress state. As an example, Table 5
shows the objective function for (+1,—1,+1,—1). Each of these specialized
objective functions is differentiable and, at compile time, it is also possible to
compute its partial derivatives with respect to the optimization variables. The
gradient can then be approximated via Taylor series expansion to produce a
further speedup in the optimization process. The quadratic approximations

10

Table 5: Partially evaluated objective function for the problem of Figure 1.

Volume =

(1.14 10"z — 5.66 10°2? + 8.16 10°°+
3.28 103y — 3.26 10%zy + 2.44 10°z%y—

6.70 10°? + 8.16 10°zy? + 2.44 10%° — 4.08 10¢) /
(1.28 10'zy — 2.56 10%z + 2.56 10%y — 6.40 y* — 2.56 107)

Table 6: Quadratic approximations of the gradient

Quadratic Approzimation of the gradient =
—1060187.5 + 159.4 = + 0.05z% — 68.7y + 0.2 = y—
0.00005 z2 y + 0.03 y? — 0.00003 z y% + 5.9 10~° z? 32,
—2909656.25 + 1860.4375 = — 0.3 22 + 1207.6 y — 0.8 = y+
0.0001 z2 y — 0.14 2 + 0.00009 z y% — 1.5 1072 z? y?

obtained at compile time of the gradient of the volume function in Table 5 is
shown in Table 6.

4 Experiments

To test the efficacy of this approach, we have solved a series of design problems
using an implementation based on Mathematica [Wol88], and we have mea-
sured the impact of the compilation stages on the evaluation of the objective
function, on the optimization task, and on the reliability of the optimization
method. The measurements presented are averages over five randomly gener-
ated designs and, for each design, over 25 randomly generated starting points.

Objective function. The objective function of each design problem was
evaluated in four different ways and, for each of them, we averaged the CPU*
time over the different designs and starting points. The volume was first
computed using the traditional, naive, numerical procedure with the method
of joints. We then compiled the designs incorporating, in three successive
stages, topological information, the givens of the problems, and the stress

4The examples were run on a NeXT Cube with a 68030 board.

11

state. Figure 5 shows the time (per 100 runs) to evaluate the objective function
at the various compilation stages. The biggest speedup was obtained with
the numerical substitution of values into the symbolic closed form expression
obtained and with the specialization to stress states. This suggests that the
gain is related to the elimination of arithmetic operations from the original
numerical problem.

Optimization. As indicated in Section 1, the running time of the optimizers
is influenced by the number of function calls and by the time for each func-
tion evaluation. To present the benefits of our approach on the optimization
task, we have experimented with two optimization algorithms (a) an optimizer
based on Powell’s method that does not require gradient information and (b)
the version of conjugate gradient descent [P*88] provided by Mathematica.
The graphs in Figures 6 and 7 report, respectively, the number of objective-
function calls and the overall CPU time for each optimizer. The values con-
nected by solid lines correspond to cases where the optimizer had no gradient
information, while the values connected by dashed lines indicate averages uti-
lizing the conjugate gradient descent method with alternative approximations
for the gradient vector.

As expected, the number of evaluations remains constant throughout the
compilation stages when the non-gradient is used, while it decreases drastically
when we switch to the gradient-based optimization method. The overall CPU
time (Figure 7) steadily decreases as well. For the non-gradient method, the
decrease is due to the progressive simplification of the objective function itself,
so that it is cheaper to evaluate. When we switch to the gradient method, there
is initially no speedup at all, because the cost of evaluating the full gradient
offsets the decrease in the number of times the objective function must be
evaluated. However, additional speedups are obtained by approximating the
objective function as a quadratic and as a linear function (by truncating its
Taylor series).

We have found experimentally that there is no appreciable difference be-
tween the minima reached using the full gradient vector and the minima com-
puted using quadratic approximations of the partial derivatives. However, the
precision of the results obtained with the linear approximation is significantly
reduced. Depending on the application, this trade of accuracy for speed may
be acceptable. If not, the quadratic approximation should be employed.

Another possibility is to employ the linear approximation for the first half

12

CPU sec.

17
Naive Topology Instance Stress
COMPILATION STAGE

Figure 5: Average CPU time per function evaluation.

13

Function
calls.

CPU sec.

Naive Topology Instance

Stress Gradient Quadratic Linear

COMPILATION STAGE

Figure 6: Average number of function calls.

32.2

Naive Topology Instance Stress Gradient Quadratic Linear
COMPILATION STAGE

Figure 7: Average CPU time.

14

of the optimization search, and then switch to the quadratic approximation
once the minimum is approached. In other words, the linear approximation
can be applied to find a good starting point for performing a more exact search.

Reliability. An optimization method is reliable if it always finds the global
minimum regardless of the starting point of the search. Unfortunately, as
shown in Figure 4, the objective function in this task is not unimodal, which
means that simple gradient-descent methods will be unreliable unless they are
started in the right “basin.” It is the user’s responsibility to provide such a
starting point, and this makes numerical optimization methods difficult to use
in practice.

From inspecting graphs like Figure 4, it appears that, over each region -
corresponding to a single stress state, the objective function is unimodal. We
conjecture that this is true for most of 2-D structural design problems. This
means that optimization can be started from any point within a stress state,
and it will always find the same minimum. If this is true, then our “divide-and-
conquer” approach of searching each stress state in parallel will be guaranteed
to produce the global optimum.

We have tested these hypothesis by performing 20 trials of the following
procedure. First, a random starting location was chosen from one of the
basins of the objective function that did not contain the global minimum.
Next, two optimization methods were applied: the non-gradient method and
the conjugate gradient method. Finally, our divide-and-conquer method was
applied using, for each of the specialized objective functions V;, a random
starting location that exhibited the corresponding stress state. In all cases,
our method found the global minimum while the other two methods converged
to some other, local minimum.

5 Concluding Remarks

Our overall strategy for speeding up numerical optimization methods relies on
successive specializations and simplifications of the objective function. This
paper has described two specialization steps: (a) specializing the objective
function by incorporating the invariant aspects of the particular problem and
(b) splitting the objective function into special cases based on stress states.
In a companion paper [CD89], we illustrated another source of constrain-
ing knowledge that can be incorporated into the objective function. In that

15

paper, inductive learning methods were applied to discover regularities in the
solutions found by numerical optimization. These regularities apply to par-
ticular classes of problems and include constraints such as a; = a3 (i-e., two
angles must be equal) and constraints that a member must be tangent to a
“forbidden region” (a region into which the structure must not intrude).

When regularities of this kind are discovered, they too can be incorporated
into the objective function. This often has the effect of reducing the number
of independent variables, and hence, the dimensionality of the search space.

The benefits of all of these forms of specialization are great. First, the cost
of evaluating the objective function is reduced. Second, the specializations
make it possible to obtain differentiable closed forms for the objective func-
tion. This allows us to apply gradient-directed optimization methods, which
generally require fewer evaluations of the objective function to find the opti-
mum. Third, the specializations create opportunities for parallel execution of
the optimization calculations. Existing numerical optimization procedures are
inherently serial and contain almost no parallelism.

We are currently attacking the following open problems. First, not al-
1 of the 2™ load paths make physical sense. We have developed rules that
can exploit this to prune useless load paths. Second, we hope to prove our
unimodality hypothesis. - This would provide a proof of correctness for our
divide-and-conquer schema. Finally, we want to tackle the problem of select-
ing a good topology. Topological optimization is nearly impossible to perform
using current numerical methods. However, if we can find reasonable approxi-
mations for the special case objective functions, we believe it will be possible to
bound the weight of an optimal design for a given topology without perform-
ing the complete optimization process. This would allow us to determine the
conditions under which one topology will be lighter than another. Such topol-
ogy optimization rules would provide a valuable tool for mechanical designers.

A cknowledgments
The authors wish to thank Dr. David G. Ullman and Dr. Prasad Tadepalli for
comments on drafts of the paper, Dr. Igor Rivin for information on the inter-
nals of Mathematica, and Dr. Jerry Keiper for insights into FindMinimum]] in
Mathematica version 1.2.

16

References

[Bra88]

[CD89]

[E189]

[Fri71]

[GorT8]

[Ming88]

[P+88]

[PS70]

[PW8S]

[Van84]

[Wol88]
[WS84]

Walter Braudaway. Constraint incorporation using constrained refor-
mulation. Tech.Rep. LCSR-TR-100 Computer Science Dept., Rutgers
Univerisity, April 1988.

Giuseppe Cerbone and Thomas G. Dietterich. Inductive and numer-
ical methods in knowledge compilation. In Proceedings of the Work-
shop on Change of Representation and Problem Reformulation, 1989.

Thomas Ellman. Explanation-based learning: A survey of programs
and perspectives. ACM Computing Surveys, 21(2):163-222, 1989.

L.R. Friedland. Geometric Structural Behavior. PhD thesis, Columbia
University at New York, N.Y., 1971.

James E. Gordon. Structures: or, Why things don’t fall down. Plenum
Press, New York, 1978.

Steve Minton. Empirical results concerning the utility of explanation-
based learning. In Proceedings AAAIL 1988.

William H. Press et al. Numerical Recipes in C: the art of scientific
computing. Cambridge Univerisity Press, Cambridge, 1988.

A.C. Palmer and D.J. Sheppard. Optimizing the shape of pin-jointed
structures. In Proc. of the Institution of Civil Engineers, pages 363—
376, 1970.

Panos Y. Papalambros and Douglass J. Wilde. Principles of optimal
design: modeling and computation. Cambridge University Press, 1988.

Garret N. Vanderplaats. Numerical Optimization Techniques for en- -
gineering design with applications. New York: McGraw Hill, 1984.

Steven Wolfram. Mathematica. Wolfram Research, 1988.

Chu-Kia Wang and Charles G. Salmon. Introductory Structural Anal-
ysts. Prentice Hall, New Jersey, 1984.

17

