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ABSTRACT
Intelligent desktop environments allow the desktop user to
define a set of projects or activities that characterize the user’s
desktop work. These environments then attempt to identify
the current activity of the user in order to provide various
kinds of assistance. These systems take a hybrid approach
in which they allow the user to declare their current activity
but they also employ learned classifiers to predict the cur-
rent activity to cover those cases where the user forgets to
declare the current activity. The classifiers must be trained
on the very noisy data obtained from the user’s activity dec-
larations. Instead of asking the user to review and relabel
the data manually, we employ an active EM algorithm that
combines the EM algorithm and active learning. EM can be
viewed as retraining on its own predictions. To make it more
robust, we only retrain on those predictions that are made
with high confidence. For active learning, we make a small
number of queries to the user based on the most uncertain in-
stances. Experimental results on real users show this active
EM algorithm can significantly improve the prediction pre-
cision, and that it performs better than either EM or active
learning alone.

ACM Classification: I.2.1 [Artificial Intelligence]: Appli-
cations and Expert Systems. - Office automation.

General terms: Design, Human Factors, Experimentation.

Keywords: Intelligent interface, machine learning, noise,
Expectation-Maximization, active learning.

INTRODUCTION
Several groups are developing “activity-aware” desktop en-
vironments that model the desktop user as switching among
a collection of ongoing activities. For example, the Task-
Tracer system [28] allows the user to define a set of activi-
ties such as “teach CS534”, “IUI-2007 paper”, “write NSF
proposal” and so on. TaskTracer captures a wide range of
desktop events (file open, save, email send, web page visit,
cut/paste, etc.). It then builds and maintains a database of
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associations between each activity and the “resources” (i.e.,
files, folders, web pages, email messages, email addresses)
that are accessed when working on that activity. This set of
associations is then applied to help the user in several ways:

Finding and Accessing Resources. Multi-tasking users are
frequently interrupted. When the user returns from an inter-
ruption (after a few minutes, hours, or days), the user can
obtain a display of the “resources” (files, folders, web pages,
etc.) associated with the activity (see Figure 1(a)). This re-
minds the user of what the user was working on before the
interruption. Double clicking on a desired resource (e.g., a
Word file) launches the appropriate program. Having all re-
sources in one place is much more efficient than searching in
desktop search or going through various applications (email,
Windows Explorer, IE Favorites, etc.) looking for the right
resource.

Folder Prediction. When the user initiates an Open or
SaveAs, TaskTracer estimates the probability P (f) that the
user will want to open/save in folder f and initializes the
Open/Save dialogue box in the best predicted folder. Specif-
ically, it computes the set of three folders that jointly mini-
mize the expected number of clicks to reach the target folder
(see Figure 1(b)).

The key to providing these services is to correctly associate
each activity with the relevant resources. One way to do this
is to require the users to explicitly declare their current ac-
tivity, and then associate each accessed resource with the de-
clared activity (as in the UMEA system [15]). TaskTracer
supports this by providing a drop-down box that makes it
easy for the user to declare the current activity, either by se-
lecting with the mouse or by typing the name of the activ-
ity (with auto-completion). The drop-down box is always
attached to the window in focus. This explicit declaration
of the activity makes sense when the user is returning from
an interruption and wants to bring up the list of relevant re-
sources. However, this approach fails when the user is inter-
rupted (e.g., by a phone call, IM). The user typically changes
documents, web pages, etc. without remembering to first in-
form TaskTracer. In such cases, we would like TaskTracer
to automatically detect the activity switch and correctly as-
sociate the new resources with the correct activity.

The learning challenge is to predict the current TaskTracer
activity of the user based on their current desktop actions
(opening files, visiting web pages, reading emails, etc.). As
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Figure 1: The TaskExplorer lists all resources related to the current activity; the Folder Predictor provides 3 predicted
folders in the “places bar” at left

training data, we have available all of the previous resources
that were accessed by the user and the name of the corre-
sponding activity that was declared by the user. Hence, this
can be formulated as supervised learning with very noisy la-
bels. This paper describes learning methods for this noisy
learning task.

Our basic approach is to first train a classifier using the noisy
labels (i.e., treating them as correct). This classifier then
serves to initialize an unsupervised learning process in which
the Expectation-Maximization (EM) method [8] is applied
to maximize the likelihood of the data (ignoring the class
labels). We combine this EM approach with pool-based ac-
tive learning [18] to reach even higher precision. Our ac-
tive learner requests from the user the true class labels for
instances about which it is most uncertain. Because each
query is considered as an expensive operation, we only make
a limited number of queries. We select queries based on a
heuristic criterion which measures the entire uncertainty that
the instance value contributes to the training set.

The paper is organized as follows. First, we define the pre-
diction task and the input features that we employ. Sec-
ond, we describe our solution to reduce the noise in activ-
ity recognition – an active EM algorithm, which combines
the Expectation-Maximization (EM) method [8] and an ac-
tive learning strategy. We then present an experimental study
of its effectiveness. The paper concludes with a discussion
of the results.

THE ACTIVITY PREDICTION TASK

TaskTracer collects events from MS Office 2003, MS Visual
.NET, Internet Explorer, and the Windows XP operating sys-
tem. Then various TaskTracer components provide services
to the user based on this information. From this stream of raw
events, TaskTracer extracts a sequence of Window-Document
Segments (WDSs). A WDS is a maximal contiguous seg-
ment of time in which a particular window has focus and the
name of document in that window does not change. Hence,
each time the user switches from one window to another or
invokes SaveAs, this begins a new WDS.

TaskTracer constructs a “bag of words” representation of
each WDS by extracting words from the window title and the
file pathname or URL. Words are stemmed [26] and words
appearing in the “stopword list” are removed. We will de-
note the resulting bag of words by x = (x1, . . . , xj , . . . , xn),
where xj is an indicator variable that is 1 iff the j-th word ap-
peared in the WDS bag of words. Let xi denote the training
bag-of-words for the i-th WDS and yi be the user’s (noisy)
declared activity for that WDS. Given a set of training ex-
amples, we compute the mutual information between each
feature xj and the class label y and select the 200 features
with highest (individual) mutual information. Our previous
work [28] has shown that using mutual information can sig-
nificantly improve the prediction precision.

Note that the same bag of words can be observed multiple
times in our data for two reasons. First, each time the user re-
turns to an application window after visiting another window,
TaskTracer creates another x from the same window title and
pathname or URL. Second, there are relatively few words in
each x, so it is possible that after stemming and stopword re-
moval, two webpages on the same website or two documents
in the same folder will yield the same bag of words.

To collect the labeled training data, we rely on the user to in-
dicate the activity by selecting the activity name from a spe-
cial drop-down box, and it’s likely that the user sometimes
will forget to do this, especially in a busy time period. This
will make the labeled data quite noisy and lead to poor pre-
dictions. To reduce the noise in the training data, we wrote an
application called the “Event History Editor”. A screenshot
of this Editor is shown in Figure 2. This application lists the
event records in a specified time range. The user can review
the activity log and correct the labeling mistakes. However,
reviewing these records is a painful and mistake-prone job,
considering the large volume of records. Only a few people
have the stamina to do this. Hence, we need some automatic
mechanisms to relieve the user from this burden.

LEARNING ALGORITHMS
When we train on the noisy data, we believe that the user’s
labels could be wrong. Hence, we adopt the Expectation-
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Figure 2: The screenshot of Event History Editor, which is used to relabel the user’s activity. “Caption label events” are
TaskBegin events generated by selecting the activity name from a drop-down box at run time, and “Gold events” are the
corrected TaskBegin events given by the user at post-processing time. “Key events” are events useful for training.

Maximization (EM) method [8], an unsupervised learning
technique that can handle incomplete and missing data. In
this case, EM can be viewed as down-weighting the user’s
labels when those labels have low probability according to
the learned model.

To make EM more robust, we probabilistically relabel the
training instances only when the relabeling is confident. We
also augment EM with active learning by issuing queries on
the most uncertain instances. In this paper, we employ naive
Bayes as our basic classifier, but the approach can also be
applied to other probabilistic classifiers.

Selective EM
EM is a class of iterative algorithms for maximum likelihood
estimation in problems with incomplete data [8]. Here, we
initialize EM by training an initial classifier h based on the
noisy instances. Then EM repeatedly performs a two-step
procedure: in the E-step, it uses h to compute P (y|x), the
probability distribution over the predicted labels for each in-
stance x. This can be viewed as “relabeling” the training data
using the predictions from h. However, the labels are prob-
abilistic: instead of assigning a single label to each x, EM
assigns the probability distribution P (y|x). Then, in the M-
step, EM fits a new maximum a posteriori classifier h using
the predicted label probabilities as weights. The idea is to
initialize EM “onto the right hill”, and then hill-climb to the
top.

By exploiting word co-occurrence information contained in
the noisy data, EM can help the classifier recover from incor-
rect labels. Even if a resource (represented as a feature vec-
tor) was uniformly accessed by different activities because
the user forgot to change activities, such noise can still be
reduced if this feature vector contains some discriminative
features. For example, suppose that, because of mislabeling,
a document named “Events Listener” was labeled roughly
the same number of times with the activity “project Task-
Tracer” and the activity “project Bugs”. Suppose that the
word “Listener” appeared only in this document name and

therefore, it has no predictive value (because the document
appeared an equal number of times in both activities). But
fortunately, the word “Events” appeared in other WDSs that
were labeled with “project TaskTracer”. Therefore, in the ini-
tial fitted model, EM learns that “Events” is discriminative.
This allows it to correctly predict that “Events Listener” is
associated with “project TaskTracer” and therefore to correct
some of the mislabeled WDSs. In the M step, it will therefore
be able to learn that the word “Listener” provides discrimi-
native evidence for “project TaskTracer”. In effect, the dis-
criminative power of “Events” was propagated to “Listener”.
This spreading of discriminative power continues until con-
vergence.

This approach is similar to previous applications of EM in
semi-supervised learning [23, 25, 21]. These studies have
shown that it can be unreliable and sometimes gives poor re-
sults. Our preliminary study also shows that EM sometimes
decreases prediction precision. A possible explanation is that
noisy labels still contain useful information, but the approach
described above ignores the noisy labels after the initializa-
tion step. These noisy labels might be especially useful when
the EM classifier predicts a nearly uniform probability distri-
bution for the class labels. In such situations, using the pre-
dicted probabilities as weights may be worse than using the
original noisy labels.

We therefore adopt a mixed strategy in which we “relabel”
training examples when the EM classifier is highly confi-
dent, but retain the original noisy labels when it is not confi-
dent. Let the initial classifier’s prediction accuracy for bag-
of-words xi be ci. We can crudely approximate EM as a
process of complete relabeling (as in Gibbs sampling). In
this case, the predicted labels will be wrong with probability
1 − ci. If the user’s label for xi is wrong with probability εi,
it would be better to retain the user’s label if 1 − ci > εi. Of
course, we don’t know either ci or εi. Instead, we introduce
a tunable confidence threshold α. Let p̃i be the probability of
the most likely class label P (y|xi) as predicted by the cur-
rent classifier during EM. If p̃i < α, then in the M step, we



Procedure ACTIVEEM(S, α,m, k)

Input: S, the data set ; α, the threshold of EM ; m, the maximal iteration number ; k, the maximal query number.

Initialize classifier h;
do ()

for each instance i in S, assuming its feature vector is xi

if (a query has provided the label ỹi for xi) predict ỹi with P (ỹi|xi) = 1;
else compute the posterior probability distribution viof xi using h;
if (maxy P (y|xi) > α) update the training weight with the probabilities;
else keep using the original label;
Compute q(xi) from vi;

if (the number of queries until now < k)
Choose the instance x with the highest q(x), and ask the user for the label of x;
if (the user indicates a label for x) update the labels of all instances with value x;
else add all features of x to the stopword list;

Retrain the classifier h;
until (convergence or the number of iterations is ≥ m)
return (h);

Figure 3: The Active EM algorithm, which combines active learning with selective EM.

employ the user’s original noisy label yi. Otherwise, we fol-
low the normal EM approach of using the weighted labels
P (y|xi). Our reasoning is that when p̃i is large, the pre-
diction is very likely to be correct [28], so it is likely that
1 − ci < εi. We call this the Selective EM algorithm. It
converges rapidly (usually in fewer than 10 iterations).

Active Learning
Selective EM is able to repair noisy labels if the fitted naive
Bayes model is very confident. But it cannot recover from
noisy labels when the fitted model is uncertain.

Active learning is a methodology for choosing queries to ask
the user, and then using the results of those queries to con-
strain learning [1]. Active learning has been studied in the
context of many natural language processing applications.
Pool-based active learning for classification was introduced
by Lewis and Gale [18]. The learner has access to a pool
of unlabeled data, and it can request the true class labels for
a certain number of instances in the pool. The main issue
with active learning is to find a way to choose good queries
from the pool. In many settings, an active learner is usually
designed to select instances that, when labeled and incorpo-
rated into training, will most reduce the expected prediction
error over the distribution of future instances [7, 19].

When the training set is large, the computation to find the sta-
tistically optimal query is expensive. For an interactive intel-
ligent desktop application, we need a very efficient method.
The simplest one is to randomly pick some unqueried bags
of words, and ask for labeling. We can also use Error Sam-
pling to select the query, which prefers the instance with a
small absolute difference between the estimated class prob-
abilities of the two most likely classes [6, 27]. But neither
of these methods takes into account the fact that the same
bag of words can be observed multiple times in our data. In
this paper, we adopted the following procedure, which gives

superior results. Given bag-of-words xi, we define the un-
certainty about xi as:

q(xi) = niH(y|xi) = −ni

∑
y

p(y|xi) log p(y|xi), (1)

where ni is the count of times that bag-of-words xi occurred
in the training set and H(y|xi) is the entropy of the predicted
label probability distribution. Entropy is a measure of the
amount of uncertainty about an event associated with a given
probability distribution. If the probabilities of all tasks are
close and no one predominates, then our uncertainty (and,
hence, the entropy) is maximal. We take into consideration
ni, because unlike most text classification problems, our bags
of words can be repeated many times in the training data.
Hence, q(xi) reflects the entire uncertainty that bag-of-words
xi contributes to the training set. Note that we can compute
the q values efficiently as a byproduct of the EM computa-
tion. We pick the bag-of-words with the highest q value, and
ask the user to give the real label for it.

One potential problem with active learning is that sometimes
the user finds it difficult to assign a label to the query. In
TaskTracer, this occurs because some bags of words do not
contain any informative words. For example, when the user
first starts up Internet Explorer, the default title is “about:blank
- Microsoft Internet Explorer”. Obviously this provides no
information about the user’s current activity. We address this
by allowing the user two choices in response to our query:
(a) the user can give the label of the correct activity or (b) the
user can indicate that the correct label cannot be determined
because the words are not informative. In the latter case,
we add all of the words from the bag of words to the stop-
word list. Our “stopword list” is therefore the set of all words
that the system believes are uninformative. It initialized with
some very common words, such as “of”, “Microsoft”, etc.,
and the system will add more uninformative words into it.



This allows us to use active learning for feature selection as
well as to obtain labels for uncertain data points.

Combining EM and Active Learning
Combining active learning with selective EM can reach bet-
ter performance than either selective EM or active learning
alone. Active learning can improve the accuracy of selec-
tive EM by making informative queries, and selective EM
can help active learning choose a better query by using its
improved classifier. The entire algorithm, Active EM, is de-
scribed in Figure 3.

To limit the burden placed on the user, we only allow a fixed
number k of queries. A query on the instance with the high-
est q value will be made if we have not exceeded the maximal
number of queries. We can reach higher precision by allow-
ing more queries, but at higher cost to the user.

To avoid selecting an instance whose value has already been
queried, after the query on value xi has been made, we attach
a mark to all instances whose feature vectors are equal to xi.
When making predictions, instances that were assigned la-
bels as the result of a query will be predicted to have these la-
bels with probability 1. Instances indicated as uninformative
will not be used for retraining, since all of their features are in
the stopword list. In each iteration of Active EM, before re-
training the classifier, we re-select the 200 features with the
highest mutual information with the best known label (i.e.,
either the label obtained from a query or the original noisy
label), and we do estimation based on these new features.

EXPERIMENTAL RESULTS
We deployed TaskTracer on Windows machines in our re-
search group. To evaluate the various algorithms, we need
data for which we have both the original noisy labels and
the true labels. To obtain the true labels, we implemented the
“Event History Editor” described above. This allows the user
to review and relabel the collected data. We then train with
the noisy labels, but evaluate the results with the real labels.
Because only a few people have the stamina to do this rela-
beling, we only obtained two datasets, which we will refer
to as SA and FB1. Dataset SA records 2.5 months of activ-
ities, including 8 distinct activities, 512 distinct words and
4407 instances (including duplicates). Dataset FB records
2 months of activities, including 51 distinct activities, 781
distinct words and 3138 instances. On average, there are ap-
proximately two instances of each bag of words.

Procedure. We adopted an on-line learning methodology as
follows. The data is sorted according to time. To evaluate
each algorithm, we process the training data one day at a
time starting with the day that is 25% of the way through the
data set. To test an algorithm on day t, we train the classifier
on the data from days 0 through t − 1 and then measure the
accuracy on day t. This process is repeated until all data
have been processed. The final reported result is based on
the performance averaged over all of these days (after the first
25%). The initial 25% period gives the algorithm a “running
start” before it has to be evaluated.

The Active EM algorithm was allowed 4 queries per day,

1Available at http://www.cs.orst.edu/˜shenj/TT Data
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Figure 4: Precision of EM as a function of coverage for
SA, created by varying the decision threshold θ.

which it chooses at the end of each day. We did not deploy
Active EM on the users’ desktop machines. Instead, we sim-
ulated their answers as follows. We first employed the entire
data set to compute the 200 features with the highest mutual
information. We call this set of features Ω, and we treat these
as the true set of relevant features. When Active EM makes a
query for an instance that contains no features from these top
200, we answer that the query is “uninformative”; otherwise
we answer with the real label (as provided by the user via the
Event History Editor).

When making predictions, we employ a rejection thresh-
old, because in this application, an incorrect prediction is
worse than no prediction. This is because if a prediction is
made, we plan to have the TaskTracer system pop up a “bal-
loon” message telling the user “TaskTracer thinks you have
changed your activity; click here”, which interrupts the user
and asks for confirmation of the activity change.2 The re-
ject decision is made as follows: let ŷi = arg maxy P (y|xi)
be the label with the highest predicted probability, and let
pi = P (ŷi|xi) be its predicted probability. If pi > θ (where θ
is a specified threshold), then the system makes a prediction;
otherwise, it rejects the instance and remains silent (i.e., does
not interrupt the user). We consider two metrics in evaluat-
ing the algorithms: coverage and precision. Coverage is the
number of predictions divided by the number of instances,
and precision is the number of correct predictions divided by
the number of predictions issued.

We map out a precision-coverage curve by systematically
varying θ. High precision is much more important than high
coverage, because we do not need high coverage to have a
useful activity predictor. The system works in a “keyframe”
way: if we can accurately predict the ongoing activity at
enough key time points, then we can provide value between
these points. Wrong predictions are worse than no predic-
tion. Thus low coverage-high precision is the important case
to optimize.

2Our actual interruption algorithm will also take into account what the user
is currently doing before deciding to interrupt. It will also combine predic-
tions from multiple WDSs and other sources of information before making
this decision.
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Figure 5: Precision of different learning methods as a
function of the coverage, created by varying θ.

Simple EM can decrease the peformance. As we have
mentioned, EM sometimes decreases, rather than increases,
prediction precision. Figure 4 presents the results of our
experiments for participant SA. The Baseline Method fits
a naive Bayes model to the original noisy data. The EM
method always uses the predicted probabilities as training
weights in the M-step. From the plot, we see that at virtu-
ally all coverage levels EM gives precision less than or equal
to the baseline method. It performs particularly poorly at
medium and high coverage levels. We therefore excluded
standard EM from the remaining comparisons.

Comparing Active EM with other methods. Figure 5
presents the results of our experiments for our two partic-
ipants. The methods are Active EM, Active Learning, Se-
lective EM, and the Baseline Method (Naive Bayes). Active
EM is the algorithm described in the preceding section. It
employs a confidence threshold of α = 0.85 and asks 4 sim-
ulated questions per day. This α value was chosen based
on previous research showing that 0.85 gives a good tradeoff
between precision and coverage [28]. For the experiments in
this paper, the results do not vary significantly for α values
between 0.8 and 0.97. A very large α will give similar results
with the baseline method, since EM will just use the origi-
nal noisy labels for training. A separate set of experiments

0.10.20.30.40.50.60.70.8
0.7

0.75

0.8

0.85

0.9

0.95

1

Coverage

P
re

ci
si

on

16 queries
8 queries
4 queries

(a) SA

0.050.10.150.20.250.30.350.40.450.5
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Coverage

P
re

ci
si

on

16 queries
8 queries
4 queries

(b) FB

Figure 6: Precision of Active EM as a function of cov-
erage, created by varying θ.

(data not shown) found that when α is smaller than 0.8, the
performance begins to decrease. When α = 0 (equivalent
to non-selective EM), precision decreases by approximately
20%.

The Active Learning method was defined as follows. In each
iteration, it fits a naive Bayes model to the training data (as
updated by the query results) without using EM. It computes
queries and retrains the classifier exactly like Active EM.
The Selective EM method applies the α threshold to con-
trol EM, but does not make any simulated queries to the user.
The Baseline method is simply naive Bayes fit to the original
noisy data.

Figure 5 shows that for most levels of coverage, Active EM
is better than Active Learning, which is better than Selective
EM, which is better than the Baseline Method. At higher
coverage levels, Active Learning provides a larger perfor-
mance improvement than EM, but at low-to-moderage cov-
erage levels, EM can provide a very large benefit.

With only 4 queries every day, Active EM can improve
the precision over the Baseline by more than 10 percentage
points. This shows that Active EM is a very effective method
for reducing the noise in the training data. Of the queries that
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Figure 7: Precision of the Active EM given the cover-
age, created by varying θ.

are made during the experiment, 21.1% are “uninformative”
for SA and 43.7% are “uninformative” for FB.

Effect of more queries. Figure 6 shows what happens if we
increase the number of queries allowed per day. These results
show that more queries lead to better performance. With 16
queries every day, Active EM attains an additional 10 per-
centage points of precision. This is a nice characteristic: it
allows the user to increase the number of queries if the user
is not satisfied with the performance, until a satisfactory level
of precision is reached.

Sensitivity to user errors in the “uninformative answer”.
As stated above, we simulated the “uninformative answer”
using the Ω feature set. This methodology assumes that
the user can determine the informativeness of the query per-
fectly. How sensitive are the results to this assumption?

To explore this question, we performed an additional experi-
ment. Let the entire word set be Σ. To simulate an imperfect
user, we modified Ω by randomly choosing features from
Ω and replacing them with features chosen randomly from
Σ − Ω. To reduce the variance, we repeated the experiments
10 times and plotted the average results in Figure 7. With
60% of the globally informative features replaced by unin-

formative ones, the performance is decreased slightly. This
shows that the method is robust to errors in the user’s judge-
ment of what features are uninformative. It is also possible
that users, because they know more about their own activi-
ties than may be revealed in the training data, may be able to
make better judgments of informativeness than we did in our
automated experiment. Hence, the performance of Active
EM could even be better than is shown in our experiments.

RELATED WORK
Many researchers have tried to apply machine learning to
study the problem of activity recognition and prediction. The
Lumière project applies Bayesian network user models to in-
fer a user’s needs by considering a user’s background, ac-
tions, and queries [11]. Recently, Horvitz et al. [12, 13]
have been employing dynamic Bayesian networks to study
the problem of interruption. The PROACT project at Intel
Research [24] tried to infer the user’s activity from the ob-
jects involved in the activity. Mitchell et al. [20] use a cluster-
ing approach to automatically acquiring the knowledge base
about the user’s activity by analyzing the raw contents of the
workstation. There is also a growing body of work on classi-
fying email to activities. For example, Kushmerick and Lau’s
activity management system [17] uses text classification and
clustering to examine email activities that represented struc-
tured business processes; Dredze et al. [9] investigated two
different approaches to the problem of email activity classi-
fication, based on the people involved in an activity and the
contents of messages in the activity. In this paper, we are fo-
cusing on the “noise” problem arising in activity recognition.
The “noise” problem is common in these activity recognition
problems and might make the learning approach fail. Our
active EM algorithm only needs a little extra effort from the
user to improve the recognition precision significantly.

There have been many attempts in machine learning to study
the problem of learning in the presence of random classi-
fication noise including methods based on outlier detection,
voted ensembles, and trained filters [5]. Noise-tolerant learn-
ing algorithms have also been studied within the standard
PAC model [2, 16, 3]. These algorithms assume that there
is an oracle that can cheaply generate as many instances as
we want. With this assumption, these algorithms can learn
to the desired precision. However, in the real world, the size
of the training set is usually fixed, and it is very expensive to
get additional training instances. Instead, our active EM pro-
vides a practical way to efficiently correct bad training labels
and improve the precision of the classifier.

Combining labeled and unlabeled data in text categorization
has received much attention. The approaches include apply-
ing Expectation-Maximization to estimate the parameters of
a generative model [23], performing transductive inference
for support vector machines to optimize accuracy [14], and
training two classifiers using separate views of the same data
[4]. Our Selective EM was inspired by the work on self-
training [22]. Self-training initially builds a single classifier
using the labeled training data. Then it labels the unlabeled
data and converts the most confident instance of each class
into a labeled training example. This iterates until all the un-
labeled instances are given labels.



Active learning is another attempt to reduce human effort
in labeling training data. The main issue is how to select
a query. Pool-based active learning has access to a pool of
unlabeled data and can request the true labels for some in-
stances in the pool [18]. Query-by-committee [10] trains an
ensemble of classifiers and then chooses data points where
those classifiers most disagree to be the queries. Methods
for reducing the integrated mean squared error, based on the
statistical design of experiments have also been studied [7].
Error Sampling selects the query based on the absolute dif-
ference between the estimated class probabilities of the two
most likely classes [6, 27]. Tong and Koller developed an al-
gorithm for performing active learning with SVMs by taking
advantage of the duality between parameter space and fea-
ture space [29]. The algorithm attempts to shrink the version
space as much as possible at each query.

There have been some attempts to combine semi-supervised
learning with active learning. McCallum and Nigam lever-
aged a large pool of unlabeled documents in two ways—
using EM and via density-weighted pool-based sampling
[19]. Muslea et al. developed a multi-view algorithm, Co-
EMT, which combines semi-supervised and active learning
[21]. However, to our knowledge, our active EM algorithm
is the first attempt to apply semi-supervised or active learning
ideas to recover from label noise in the training data.

CONCLUDING REMARKS
This paper addressed the problem of supervised learning
with noisy labels. This problem arises in the TaskTracer
system, which provides an “activity-aware” overlay on Mi-
crosoft Windows XP. TaskTracer combines explicit user dec-
larations of the “current activity” with a learned classifier
that attempts to detect cases where the user changes activ-
ities without declaring the new activity. Our fundamental
hypothesis is that neither a system based solely on explicit
user declarations nor a system based solely on unsupervised
learning will be able to work as well as a system that com-
bines user declarations with statistical learning.

We demonstrated that combining semi-supervised learning
with active learning can significantly improve the precision.
The users painstakingly provided correct labels via an an-
notation tool, which allowed us to evaluate the performance
of our semi-supervised and active learning algorithms. The
combination of active learning with semi-supervised EM,
which we called Active EM, gave the best precision at most
levels of coverage. It performed better than Active Learn-
ing alone, and it performed better than semi-supervised EM
alone.

There are additional sources of information that our method
does not exploit, but that could improve performance. First,
the duration of the WDS could be useful for prediction, be-
cause short-duration WDSs are more likely to be mislabeled
(e.g., because the user changes the declared activity and
then closes several windows, which results in several short
WDSs). Second, the time elapsed between the moment when
the user declares the activity and the start of the WDS is also
important. It is reasonable to assume that the user’s decla-
ration is most accurate during the few minutes immediately
following the declaration, and that it becomes less accurate

over time. In other work, we have fit duration models to the
activity episodes, and these could be applied to predict when
one episode is likely to have ended and the user has switched
to a different activity. Finally, we are studying change-point
detection methods based on analyzing a sliding window of
WDSs, which will allow us to pool evidence from multiple
WDSs in predicting when an activity switch has occurred.
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